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1 Introduction

Generally, quasi-independency refers to a situation where two variables in a contingency
table are independent discarding some cells that correspond to combinations that are
special in a certain sense.

The concept of quasi-independence can be traced back to the sixties (e.g., Caussinus
(1965), Goodman (1961)), with roots in the work of K. Pearson and J.A. Harris in the
late twenties. Despite the long tradition and the broad scope of applications covering
social mobility, economics and genetics - to mention just a few - little attention has
been paid to explore alternative ways to formalize the concept.

For a contingency table for the variables (X7, X5), quasi-independency on a set S of
cells of the table is traditionally defined in terms of a factorization property of the
underlying probability distribution:

P(Xy =21, Xy = x3) = f(z1)9(22) for (z1,22) € S. (1)
In log-linear models this condition can be expressed immediately by equating certain

A-parameters of the model to zero.

As a motivation for (1), many authors suggest implicitly or explicitly (cp. Agresti
(1990) pag. 355) that X; is quasi-independent of X5 on S if and only if

X11X5|(X1,X5) €8 (2)

i.e., they relate quasi-independency to the classical definition of independence. Al-
though (2) is a formally correct statement, it is shown in Appendix I, that the condi-
tion generally defines a family of degenerated distributions. Hence, it should not be
considered as the foundation of (1).

In the literature, two special cases are well known for which a correct formal definition
(with a clear intuitive meaning) is available.

(7) The first one is when all (excluded) cells not belonging to S have more observa-
tions than what one expects under the classical independence hypothesis. As a
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classical example, look at the vote intentions with panel data, known for their
inertia of the political affiliation of the respondents. Typically, a latent variable
is introduced dividing the population in two groups: stayers who firmly belong
to a certain political party and movers whose political preference might change.
The frequencies of the movers are modelled by a classical independence model
(Goodman (1965)).

(17) A second special case is when the set of cells S has a particular configuration such
that quasi-independence is equivalent to the simultaneous classical independency
assumption for particular subtables of the original contingency table (Bishop et
al. (1995)).

In the current paper we aim to present a generally applicable definition of quasi-
independence with an intuitive interpretation. In many cases it will coincide with
the classical definition. Nevertheless, there exist non-pathological configurations for
S for which significant differences arise. In section 2, the definition is given while in
section 3, a comparison is made with the classical definition. In the last sections we
discuss some examples and the corresponding estimation problem.

In the sequel, we will suppose that X; € {0,---,r; — 1},7 = 1,2 and that all cell
probabilities on S are nonzero. Outside S, cell probabilities are completely arbitrary.

2 Quasi-independency and Probability Ratios

Independency of two stochastic discrete variables is defined either by a factorization
property of the joint probability distribution or by means of restrictions on conditional
probabilities:

X1 Xy & Vo, 20, y1,y2 0 P(Xy = 21| Xy = 132) = P(X) = 21| X5 = 1) (3)
P(X2 = .Z‘Q‘Xl = .7,'1) = P(X2 = .7,'2|X1 = yl)

This first approach leads to (1) as a definition for quasi-independency, with the advan-
tages and disadvantages already mentioned in the previous section.

An alternative starting point to introduce quasi-independency is to restrict the values
of z1,22,y1,y2 in (3) to those (z1,22), (%1, ¥2), (y1,22) belonging to S. Nevertheless,
as shown in Appendix II, the corresponding definition is not immediately useful for
practical purposes. In general, due to the existence of excluded cells, typically defined
in terms of the values of both variables, one should avoid defining quasi-independency
using marginal distributions (as one does with conditional probabilities).

Instead of (3), we take as a starting point the characterization of independence of two
stochastic variables X7, X5, which is expressed by means of the following relationships
between ratios of probabilities:

P(X1 = xl,Xg = 3?2)

Xi1lX iff
' 2 P(XlzylaXQZxQ)

does not depend of xs. (4)
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The restriction of (4) to cells belonging to S leads to the following definition.
Definition 2.1 For a given set of cells S of a contingency table of (X1,X3), X1 and
Xy are quasi-independent on S iff

P(X1 = 331,X2 = 3?2)
P(X1 =1y, Xo = $2)

()
does not depend on xo for every (x1,22), (y1,%2) belonging to S.

An equivalent requirement to (5) is

P(Xl = ,’El,XQ = ,’Eg)
P(Xl =1,Xy = yz)

(6)

does not depend on z; for every (z1,x2), (z1,y2) belonging to S.

We use the fact that the mean of a geometric distribution with parameter 6 equals 1/6
to give an intuitively appealing reformulation of the above definition.

Definition 2.1 (alternative) For a given set of cells S of a contingency table of (X1, Xs),
X and Xy are on S iff under independent sampling of (X1, Xs), the fraction of the
mean waiting time to observe the first time (x1, z3) to the mean waiting time to observe
the first time (y1,x2) does not depend on x5 for every (1, z3), (y1,22) € S.

To get a flavour of the similarities and differences with the usual definition of quasi-
independency, consider the contingency table of Fig. 1 where the excluded cells are
marked in black while the cell probabilities are given in terms of the parameters f;, g;
and p, up to a normalization constant.

Figure 1.



Clearly, this distribution satisfies Def. 2.1. Because of the presence of the additional
free parameter p, there is in general no quasi-independence according to (1). Clearly,
equation (1) is more restrictive. For the table of Fig. 1, taking u = 1, contrary to Def.
2.1, relationships like

P(X]_:O,XQZQ)P(X]_::[S,XQ:O) P(X]_:O,X2:4)

P(X1:5,X2:2)P(X1:3,X2:O) P(X1:3,X2:4)

are implied as a by-product.

3 A Comparison with the Classical Definition

The configuration of the cells that belong to S determines the possible differences
between the two approaches. We therefore use the following classifications.

Definition 3.1 (Bishop et al. (1995)) Two cells in S are associated if they are in the
same row or column of the contingency table.

Definition 3.2 (Bishop et al. (1995)) The set of cells S is connected if every pair of
cells in S can be linked by a chain of cells, any two consecutive members of which must
be associated.

Here is a well known result: if S is not connected, there exists a permutation of the
rows and columns such that the corresponding contingency table has a block-diagonal
structure and each block can be treated in its own isolated way. For this reason we
can and do assume that S is connected. If not, we apply the analysis to each of its
connected components.

Definition 3.3 A subset A of cells in S is united if every pair of two cells in S can be
linked by a chain of cells of S, any two consecutive members of which must be neighbours
(i-e., of the form {(z1,22), (1,22 + 1)}, {(21,22), (¥1, 22 — 1)}, {(21,22), (x1 + 1, 22) }

or {(z1,22), (11 — 1,1) }).

For example, in Fig. 2, the set {¢1, ¢y, ¢4} is united. The set {¢;,c3} is not.
Definition 3.4 Two disjoint subsets of cells A and B are correlated if there exist values
T1, T2, Y1, Y2 such that of the four elements of the set {(x1,z2), (1, Y2), (Y1, ¥2), (Y1, 72)},

three belong to one set while the remaining one belongs to the other set.

In Fig. 2, the cells U; and U, are correlated because of the set of cells {ci, ¢s, c3, s}
The sets U; and Uy are uncorrelated.
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Figure 2.

Given a connected set S, denote by {U;} the partition of S into its united subsets.
Taking repeatedly the union of those {U;} that are correlated, leads to an uncorrelated
partition of S:

S=UV;,
such that each V; is uncorrelated with S\ V;.

For the table of Fig. 2, the two sets {c1, co, c3, ¢4} and {cs, ¢4, cg, ¢z} lead to the uncor-
related partition consisting of V; =U; UlUs UUs, Vo = Us and V3 = Uy.

Finally, we define border columns and border rows.

Definition 3.5 (i) Given S, we call the row z1, 0 < z1 < r; — 2, a border row on S
iff there does not exist a column x9, 0 < 9 < 19 — 1 such that (x1,z3) and (x1 + 1, z2)
both belong to S.

(i1) Given S, we call the column x9, 0 < x5 < 19 — 2, a border column on S iff there
does not erist a row x1, 0 < z1 <1 — 1 such that (xz1,x2) and (x1,22 + 1) both belong

to S.

In Figure 2, column 7 is a border column. Observe that a border row or column will
always separate at least two uncorrelated sets.

We now reformulate our concept of quasi-independence in terms of a representation for
the elements in the contingency table.

Property 3.1 For a given connected set of cells S and P(-), a positive distribution on
S, P(-) is quasi-independent on S according to Def. 2.1 iff there exist functions f(-),
g(-) and constants p; such that:

IOgP(Xl = .Z‘l,XQ = .1‘2) = f($1)+g($2)+z ,ui]l((ﬂfl,.fg) € Vz) 5 V(l‘l,ﬂfz) €S (7)
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where {V;} is an uncorrelated partition of S and I(-) denotes the indicator function.

Proof
Assume that quasi-independency holds. Then we define for 0 < z; <7y — 1:

P(X1=z1,X2=x2)

P(X= 1,Xo= 3 -
g - (X1=e1+1,X5=23) i 2. is not a border row
= )
1 1 in the other case

and similarly for 0 < zo < ry — 1:

P(Xlzwl,Xzz:Ez)

. PXi=z1,.Xs=22+1) i 2 ig not, a border column
Jza 1 in the other case .

The essentials of the proof will be explained for the particular case of the table of Fig.
2. Consider the set U;.

Use the fact that the cells are united and choose as a reference cell P(X; = 0, Xy = 0).
We obtain

r1—1 ro—1

\V/(,ZEl,.TQ) € Z/{1 . P(X1 = l‘l,Xg = LEQ) = P(X1 = O,X2 = 0) H fz H gy, (8)
=0 j=0

where we take [[0_, fi = H;’-:a gi=1ifa >b.
Defining:

r1—1 xo—1

fzi)=log [[ fi» g(z2) =1log ] g
i=0 §=0

and p; = log P(X; =0, X, = 0), we obtain (7) for all cells in ;.

Next, consider the cells of U,. Repeat the above scheme but take P(X; = 0, X, = 2)
as reference cell. We obtain a factorization similar to (8) as

r1—1 zo—1
V(.’L'l,.’ll'g) € Z/{Q . P(X1 = .’1}'1,X2 = .CEQ) = P(X1 = O,XQ = 2) H fz H g;- (9)

=0 j=2
Now, U, and U; are correlated. Therefore by quasi-independency, P(X; = 0, Xy = 2)
can be entirely written in terms of cell probabilities of ) in that

P(X1=0,X2:0)P(X1:2,X2=2)

PX=0,X,=2)= P(X; =2 X, =0)

(10)

Note that all terms on the right hand side are of the form (7). If we substitute (10)
into (9), we obtain a factorization of the left hand side in (9) which is of the requested
form (7).

In general, it will not always be possible to take as a reference cell the one with the
lowest index value for z; and lowest index value for x5. Nevertheless, the fact that the
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set is united, still guarantees an expansion of the form (7).
We repeat the above procedure for all united sets of V.

For the cells of U; in V,, the following expansion can be obtained:

P(X1—0 Xy =7)5 w2l

H fi H 9j- (11)

V(.’L'l,$2) € Z/[g . P(X1 = .’El,XQ = .’EQ) =

] 099

X1=0,X2=7)
H771 ]
=097

above argument can be repeated for each correlated set.

Taking pe = P we again end up with an expansion of the form (7). The

Corollary 3.1 For a given connected set S, the difference in the number of parameters
between the quasi-independence model of Def. 2.1 and (1) is equal to the number of
uncorrelated subsets of S, decreased by 1 plus the number of border rows and border
columns.

One important class of tables where there is a difference between the number of pa-
rameters according to the classical and our definition of quasi-independency is formed
by all n x n tables (n > 3), where S is a subset of all cells with a distance to the main
diagonal of the table, that is greater than or equal to |[n/3|. The smallest member of
this class is a 3 x 3 table with all diagonal cells excluded.

4 Estimation

First note that the model (7) is a Generalized Linear Model. Therefore, standard
optimization procedures can be used to obtain the Maximum Likelihood Estimators
(MLE) in case they exist.

Only for very particular configurations of the sampling zeros, a MLE might not exist.
Adapting slightly the results of Fienberg (1970), one obtains the following sufficient
condition.

Property 4.1 Given an r1 X ro table and a connected set S, a unique nonzero MLE
exists if the table restricted to the nonzero sampling cells, has the same uncorrelated
partition and the same border rows and columns as the original one under quasi-
independency on S.

Situations where the restriction of the table to the nonzero sampling cells, does change
the parameterization are, e.g., when some marginal (row or column) frequencies are
zero, or when two correlated sets of the original table become uncorrelated.



Proof

The structure of the proof is basically the same as the one used in Fienberg (1970) to
derive sufficient conditions to guarantee unique nonzero maximum likelihood estimators
under classical quasi-independency.

For the sake of compatibility with Fienberg (1970), we will assume Poisson sampling.
If we denote by my, ,, the expected number of observations in cell (z1,z2) and by
Tz, o, the number of observations in cell (1, z2), the log-likelihood, L, equals, up to a
constant:

L= Z (nml,mz log Mgy 3y — ml‘l;-’EZ)'
(z1,m2)€ES

Observe that it is sufficient to prove that L satisfies the following conditions: (C1) it
obtains its supremum for finite nonzero values of the parameters; (C2) it is a strictly
concave function.

e In order to prove (C1), as shown in Freeman (1987), it is sufficient to show that for
all cells (z1, z2) with sampling zeros, the maximum likelihood estimator for my, 4,
under quasi-independency is nonzero (this is the only case where n, ;, log Mg, 4, —
My, 2, does not tend to —oo when logmy, 5, — £00).

Suppose the opposite is true. In this case the likelihood function is equal to
the one corresponding to the contingency table restricted to those cells without
sampling zeros. To these the well-known result (Birch (1963)) applies that, for a
contingency without zero cells, the likelihood is bounded from above and obtains
its supremum on the inside of the parameter space.

As we suppose that the set of parameters of the restricted table are the same as
for the original table, m,, 5, > 0 for the original table, leading to the required
contradiction.

e To prove (C2): as log(-) is strictly concave, it is sufficient to show that the
parameterization of m,, ,, in(7) is a 1-1 mapping on all cells with no sampling
Zeros.

As we suppose that the sampling zeros do not change the parameterization (7),
and as {my, s, } determines completely the parameter values (see the proof of
(7)), we obtain the required 1-1 correspondence.

5 Examples

In this section we analyze two data sets, each one focusing on a different aspect of the
above introduced quasi-independency concept. The first example illustrates the utility
of having an intuitively clear definition of the quasi-independence concept; the second
example illustrates that the new parameterization leads to conclusions, different from
those resulting from the classical approach.



5.1 Example 1

The following data set was originally published in Jekel et al. (1978) and is extensively
analyzed in Freeman (1987). It concerns a study of the occurrence of soft-tissue sarco-
mas. The data are summarized in Table 1; the variable X; denotes the type of sarcoma
and X, the time period when the case was diagnosed.

X
Fibroid (0) Lipoid (1) Mixed/Others (2)
1935-44 (0) 10 12 21
X, 1945-54 (1) 70 11 31
1955-64 (2) 93 38 a7
1965-74 (3) 43 51 67

Table 1

The independency hypothesis is not acceptable due to cell (3,0) which has a standard-
ized residual of —4.08175 under (full) independency. In Freeman (1987) (pag. 91 eq.
3.34), the author proposes the model

H, : pyy 5y = Pay, 4D+, €xcept for zy =3, 25 =0 (12)

First of all, observe that in the above p,, ; and p; ;, refer to the marginal probabilities
defining ps ¢ equal to zero, i.e., not to the marginal distribution of X;, X,. Indeed, the
latter would make no sense as P(X; = z1, Xy = z3) = P(X; = x1)P(Xy = z2) for all
but one cell, together with Y- P(X; = 21, Xy = x2) = 1 automatically imply that the
factorization holds for the complete table.

Technically, model (12) is equivalent to (7) and is acceptable with a p-value of 0.1618.
Although it seems a minor detail, the use of Def. 2.1 instead of (12) offers a clear
interpretation of what one is really testing. Assume we apply independent sampling.
Then the ratio of () the mean waiting time to observe for the first time a person from
period zo and with cell tissue z; and (i7) the mean waiting time to observe for the first
time a person from period z, and with cell tissue z} does not depend on z,, in case
neither (x1,z5) nor (zf, z3) is the excluded cell.

Observe that the above interpretation is conceptually close to the basic research ques-
tion of the authors in that they were interested in studying changing patterns in sar-
comas over time (Freeman (1987)).

5.2 Example 2

The second example is taken from a 1976 Danish Welfare Survey where the structure
of the classification in social rank groups was studied for married women with age
between 40 and 59, versus their husband’s social rank. The data are summarized in
Table 2 (a). We do not pretend to present a complete statistical analysis of these data,



but only point out how the choice of the definition of the quasi-independency concept
influences the modeling stage.

As usual with this type of data, we suppose that the interest is in the off-diagonal
cells. In Table 2 (b) the standardized residuals are given under quasi-independency
excluding the diagonal cells (in this case, the two definitions coincide). One observes
large residuals in two cells. We first exclude the cell (1,0) with the largest residual and
adjust a quasi-independency model for the remaining cells (once again, in this case,
the two definitions coincide). The resulting standardized residuals are given in Table
2 (c).

If one wishes to repeat the above procedure, one should exclude the cell (0,3). But
then it will make a difference which definition of quasi-independency one is using. As
Figure 3 shows, the deletion of (0,3) leads to two uncorrelated sets. Consequently,
there will a difference of one parameter between the new and old definition. More
specifically, under Definition 2.1 one obtains that the loglikelihood ratio statistic, G?,
equals 0.46 with 2 degrees of freedom while under (1), G* = 4.43 with 3 degrees of
freedom.

X; Woman'’s social rank
I[IT (0) III(1) IV (2) V (3)
X, I11(0) | 20 35 2 22
Husband’s III (1) 4 44 122 71
social IV (2) 6 12 49 71
rank V (3) 0 6 32 146
(a)
X; Woman'’s social rank
I[IT(0) III(1) IV (2) V (3)
X, II(0) | - 046  1.03 -1.54
Husband’s III (1) | 4.10 - -3.44  -1.01
social IV(2) | -1.26  0.43 - 0.74
rank V3 | -1.92 -043 1.78 -

(b)

X; Woman’s social rank
I-IT (0) III(1) IV (2) V (3)

X, LI(0) | - 019 071 -1.54
Husband’s III (1) - - -0.60 1.03
social IV(2)| 021 -0.03 - -0.17
rank V(3) | -028 0.09 0.07 -
(c)
Table 2

Of course, as with classical quasi-independency, the exclusion of cells in a statistical
analysis should be done with a lot of caution.

10



Figure 3.

6 Conclusions

In this paper we showed how the concept of quasi-independency can be formalized in
intuitively appealing way independent of the log-linear parametrization. More specifi-
cally, our definition of quasi-independency is based on probabilistic concepts but can be
translated into a technical representation. This approach turns out to provide insight
in the exact nature of quasi-independency. Without doubt, it should be possible to
apply this notion to other concepts from categorical data analysis.

Appendix I

Consider a squared contingency table and S the set of all off-diagonal cells. Using (2)
as the definition of quasi-independency, we obtain

X1 1 XXy # Xo
or, equivalently,
Vo : P(Xq =21, Xo = 22| X1 # Xo) = P(Xg = 21| Xy # Xo)P(Xy = 20| X7 # X5).
Taking the summation over all z; such that z; # xo, we get :
P(Xy =25 X1 # X5) = (1 — P(X1 = 22| X1 # X3))P(Xy = 22| X1 # Xo),

This implies P(X; = x| X1 # X3) = 0, which is too strong a restriction for practical
purposes.

Appendix II

Suppose one defines quasi-independency by the requirements

V($1,332), (331,112), (111,332) €S: P(Xl = 331\X2 = 332) = P(X1 = $1\X2 = y2)

13
P(XQZ.’L'Q‘Xlz.’L'l):P(XQZ.’L'Q‘Xlzyl). ( )
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Let us take the particular case where S contains all but one specific cell of the table
(g, ;). Now consider all cells in row z;, that do not contain (zg,x;), i.e., x; # .
Relation (13) implies

P(X1 = iEl,XQ = .’132) P(.X2 = .’132)
P(X1 =1, Xy = y2) P(X2 = y2)'

As this is true for every s, repeated application of the basic property of real numbers

e _° pq r_c ,_* __ €
by dy by  dy by +by di+d;’

yields that

P(Xl = .7,'1,X2 = .TQ) P(X2 = .TQ)
P(Xl = Il) 1 ’

or that

P(X1 = .Tl,XQ = IQ) = P(X1 = Il)P(XQ = .’L'Q) . (14)

The same result can be obtained for all cells in a column that do not contain (xy, ;).

As every cell different from (zj,x;), is in a row (or column) not containing (zy, z;),
factorization (14) is valid for all cells belonging to S.

Use the identity 3, ., P(X; =1, X3 = x9) =1 and some algebra to see that

P(X1 = .Tk,XQ = .Il) = P(X1 = Jfk)P(XQ = .’I,'l) .

But then the independency also holds for the excluded cell (zg, x;). Hence (13) can not
be used to define quasi-independency on all but one cell.
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